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Following the analysis of principal bottlenecks in the extension of the single-reference (SR)
coupled-cluster (CC) methodology to the multireference (MR) case, we review and discuss
some recent developments that facilitate the use of general model spaces (GMSs) within the
state universal (SU) or Hilbert space MR CC formalism. The use of a GMS improves our abil-
ity to avoid the intruder state problems. This feature is further enhanced by generalizing the
idea of the externally corrected (ec) SR CC formalism to the MR situations. In this latter ap-
proach we employ the cluster analysis to extract the most important higher-than-pair cluster
amplitudes from a suitable set of known wave functions. Similarly to the SR case, the most
convenient external source is represented by wave functions that are obtained via a modest
size MR configuration interaction (CI), which employs an N-dimensional reference space.
The resulting higher-than-pair cluster amplitudes are subsequently used in the SU CCSD
method that is based on an M-dimensional GMS avoiding intruders. We discuss general as-
pects of these developments from various viewpoints and provide selective illustrations of
the key concepts and ideas.
Keywords: Coupled-cluster methodology; Multireference state-universal formalism; Intruder
states; Connectivity conditions; Externally-corrected formalism.
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Much work has been expended in pursuit of the multireference (MR) ver-
sion of the standard single-reference (SR) coupled-cluster (CC) theory1,2 (cf.
refs3,4 for an overview) leading eventually to the so-called valence universal
(VU) or Fock space5,6 and state universal (SU) or Hilbert space7 formalism
(for an overview, see, e.g., refs8–12). Yet, to this very day, no general-purpose
set of MR CC codes has been designed and various ad hoc applications re-
main rather limited (cf., e.g., refs13–15). Indeed, with the exception of appli-
cations to atomic systems (see, e.g., refs8,16), particularly at the relativistic
level (see, e.g., refs17–19), there have been very few exploitations of the MR
CC methods.

The very raison d’être why we have two, radically different, MR CC
formalisms is related to the fact that the MR generalization of the SR CC
Ansatz is far from being unambiguous. The complexity of the resulting MR
formalisms, implying considerable computational demands, also certainly
contributes to the limited exploitation of the existing MR CC theories. The
latter obstacle is closely related to the fact that both formalisms require the
use of the complete model space (CMS) if the size-extensivity is to be pre-
served, since the dimension of the CMS rapidly increases with the increas-
ing number of active orbitals and electrons, not unlike the dimension of
the corresponding full configuration interaction (FCI) problem (cf., e.g.,
ref.20). Moreover, one of the greatest impediments that is enhanced by the
use of a CMS is the occurrence of the so-called intruder states, which invari-
ably sneak in when we explore the potential energy surfaces (PESs) or
curves (PECs) over a wide range of geometries. Indeed, the larger the model
space, the more likely we are to encounter intruders.

For the reasons just outlined there has been numerous attempts to adapt
the MR CC theory – or, in fact, the closely related many-body perturbation
theory (MBPT) – employing the effective Hamiltonian formalism to incom-
plete model spaces (IMSs), or even to completely arbitrary general model
spaces (GMSs), the latter ones being spanned by a freely chosen set of con-
figurations.

In the context of VU theories, the use of the IMS was thoroughly exam-
ined by Lindgren and Mukherjee21 (cf. also ref.9), who showed that in order
to warrant the size-extensivity when using a truncated CMS, one has to
abandon the intermediate normalization of the wave operator and replace
it with the so-called size-extensive normalization22. An important step in
this direction was made by Lindgren23, who introduced the so-called
quasi-CMS. Another approach was formulated by Kutzelnigg et al.24, who
suggested the use of the so-called isolated IMS. We should also note that
the necessary and sufficient conditions for the connectivity of the effective
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Hamiltonian when a GMS is employed were formulated by Lindgren and
Mukherjee21.

In the context of the SU CC theory, the use of IMSs has been discussed in
a considerable detail already in the original paper of Jeziorski and
Monkhorst7. A specific formulation of the SU CC theory for special classes
of IMSs was later given by Meissner et al.25 This formulation was then ex-
tended to GMSs by Meissner and Bartlett26, and was again achieved by
abandoning the intermediate normalization of the wave operator. The
shortcomings of these formulations and a possible remedy27 will be out-
lined later on. Finally, we should also point out that a similar problem of
the CMS truncation arose first in the context of the effective Hamiltonian
formalism-based MR MBPT and was extensively discussed by Brandow28,
Hose and Kaldor29, and others.

Unfortunately, the use of various special IMSs just mentioned only fur-
ther complicates the already intricate MR CC formalism. Consequently, the
exploitation of these formulations has been very limited. In fact, most of
these theoretical developments have not been even tested in actual compu-
tations and we are certainly not aware of any general-purpose codes that
would be based on these formalisms.

Another alternative that enables one to overcome the intruder state prob-
lem is to exploit the Brillouin–Wigner (BW)-type formulation of the CC
theory30. Unfortunately, just as in BW MBPT, the size-extensivity property
is completely lost in these approaches and is only partially recovered in the
last iteration30,31. We would like to believe that this approach could also
benefit from some of the developments that will be outlined below.

Yet another useful strategy that avoids the problems of intruders and the
requirement of the complete model space exploits the so-called intermedi-
ate Hamiltonian formalism32. This approach seems to be particularly ame-
nable in the context of the VU CC methodology. For an excellent exposi-
tion and relevant literature see the recent work by Meissner and
Gryniaków33.

In this paper we first try to provide a general outlook that exposes the
principal bottlenecks of the MR CC theories and to lay bare the sources of
these difficulties. We then sketch how to overcome these obstacles by intro-
ducing certain new concepts that enable us to formulate a fully connected
SU CC theory based on a GMS while preserving the intermediate nor-
malization, as well as how to extend the externally corrected (ec) SR CC
methods34–36, in particular the so-called reduced MR (RMR) CCSD method37–39,
to the MR SU CC case (cf. also ref.4). We shall also expound how the latter
extension is hardly avoidable in truncated (to singles and doubles) MR CC
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approaches, which should help to conciliate some preconceived objections
or scruples concerning the ec-type methods.

Following the general outline given below, we succinctly compile the es-
sence of the effective Hamiltonian formalism in order to fix our notation,
and skim over the most recent developments27 that address the above men-
tioned problems. In doing so we shall emphasize the most important facets
of these advances as viewed from a broader perspective and assess some al-
ternative venues that were proposed earlier.

GENERAL OUTLINE

In the SR CC formalism, the energy E is fully determined by one- and two-
body clusters T1 and T2, respectively, namely

E H T T T= 〈 + + + 〉Φ Φ0 1 2 1
2

01
1
2

| ( )| . (1)

However, in the SR CC chain of equations, the k-body clusters are generally
coupled to the l-body clusters, where k – 2 ≤ l ≤ k + 2 (ignoring negative
l-values). Thus, to obtain the CCSD formalism, we have to neglect the
three- and four-body clusters by setting T3 = T4 = 0 in order to decouple the
standard CCSD equations from the rest of the CC chain. In a similar way
one arrives at higher-level approximations, such as CCSDT, CCSDTQ, etc.

Clearly, when we evaluate the energy, Eq. (1), using the CCSD cluster am-
plitudes, we obtain the CCSD energy approximating the true FCI energy for
a given ab initio model. As long as the effect of higher-than-pair clusters is
negligible, the CCSD result represents an excellent approximation. The ba-
sic assumption for the SR CC method to yield a good approximation is the
nondegeneracy of the reference (usually the Hartree–Fock) configuration
|Φ0〉 . This assumption is usually reasonably well satisfied in the vicinity of
the ground state equilibrium geometry and the small corrections (amount-
ing normally to about 1–3% of the correlation energy) due to the three-
body connected clusters can be taken care of perturbatively via the CCSD(T)
method40. Unfortunately, when breaking true chemical bonds, as when
computing the entire PESs or PECs, this basic assumption is invariably vio-
lated to the extent that the three- and four-body – or even higher-order –
connected cluster amplitudes become essential and can no longer be han-
dled perturbatively. Likewise, an explicit account of these clusters via the
CCSDT or CCSDTQ becomes soon computationally unaffordable. A proper
way to overcome these difficulties is to employ the MR formalism.
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As already alluded to above, however, the extension of the SR CC formal-
ism to the MR case is far from being unambiguous and neither of the exist-
ing formulations is free of shortcomings. This is also reflected in the fact
that no general-purpose MR CC codes have yet been developed. For this
reason, much attention has been recently devoted to the so-called state-
selective or state-specific approaches that focus on one state at a time (cf.,
e.g., ref.4). Here also belong the ec versions of the CCSD method of either
the energy41 or amplitude34,35,37–39 correcting types. The latter kind exploits
some external source of the information about the higher-than-pair clusters
and employs these clusters for a physically more meaningful decoupling of
the CC chain. Indeed, if we determine the three- and four-body cluster am-
plitudes from the full CI (FCI) wave function, representing the exact solu-
tion for a given ab initio model (as defined by the chosen atomic orbital ba-
sis set), and employ them to evaluate the T3- and T4-dependent terms that
have been neglected in the CCSD formalism, we obtain the corrected CCSD
equations that have the same algebraic form as the standard ones, but their
solution returns the exact T1 and T2 clusters, which in turn yield back the
FCI energy when employed in Eq. (1). The question thus arises which exter-
nal source wave function is most suitable and at the same time most afford-
able for this purpose.

Generally speaking, we desire such an external source wave function that
is easily accessible and provides a good description of the static and non-
dynamic correlation effects. By analyzing a number of possible sources, we
have found out that the most suitable source is provided by a modest size
MR CISD (CI with singles and doubles) wave function, which is also ex-
ploited in the RMR CCSD method37–39.

The suitability of a CI-type wave function for this purpose is understand-
able in view of the complementarity of the CI and CC approaches in their
handling of the nondynamic and dynamic correlations, respectively. More-
over, there is a simple relationship between the CI and CC amplitudes, as
implied by the exponential CC Ansatz. Consequently, it is easy to trans-
form any MR CISD wave function into the SR CISDTQ··· form and to carry
out the cluster analysis. Most importantly, a modest size MR CISD involves
only a very small subset of the three- and four-body cluster amplitudes,
namely those that play the decisive role. At the same time, these three- and
four-body amplitudes implicitly account for the T5, T6, and higher-body
clusters that are present in the MR CISD wave function. Finally, in the lim-
iting case, the FCI results are equivalent to the full CC (FCC) ones. In view
of these facts, it is not only appropriate, but in fact decidedly expedient, to
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exploit the advantages of both the CI and CC methodologies simulta-
neously.

Now, the quasidegeneracy problem that we encounter in SR approaches
is not unlike the intruder state problem of MR theories: both are due to a
strong interaction with states that are not included in the model space M0
(which, in the SR case, is one-dimensional). The above given outline indi-
cates that there are at least two avenues opened to us to eliminate, or at
least moderate, the detrimental role of intruder states in the MR CC ap-
proaches that are based on the effective Hamiltonian formalism. First, by
allowing the model space M0 to be an arbitrary GMS, we can not only avoid
possible intruders but, by choosing as small a model space as feasible, we
can greatly reduce the computational effort. Second, we can exploit exter-
nal source wave functions. Guided by our RMR CCSD experience, our pre-
ferred choice is a modest-size MR CISD. The external corrections are even
more essential in the MR case than in the SR one since, generally, the off-
diagonal elements of the effective Hamiltonian involve higher-than-pair
clusters42.

Thus, considering an M-dimensional GMS for SU CCSD, we exploit an
N-dimensional reference space MR CISD wave functions that account for
eventual intruders. We refer to this approach as the (N,M)-CCSD method.
Using the MR CISD three- and four-body cluster amplitudes we then carry
out ec SU CCSD. In this way we can account – at least approximately – for
the effect of intruders, but also for the T3- and T4-dependent terms in the
SU CCSD equations and in the effective Hamiltonian. In the following sec-
tions we briefly adumbrate the required formalism leading to the (N,M)-
CCSD method.

EFFECTIVE HAMILTONIAN FORMALISM

Let M0 designate an M-dimensional GMS that is spanned by M arbitrary
configurations |Φi〉 and M the corresponding M-dimensional target space
spanned by M exact eigenstates |Ψi〉 of the electronic Hamiltonian H of in-
terest,

H|Ψi〉 = Ei|Ψi〉 , (i = 1, ..., M) . (2)

These exact (i.e., FCI) wave functions may thus be expressed in the form

|Ψi〉 = c dij j ij j
j

M

j

| | ,
|

Φ Ξ
Ξ

〉 + 〉
〉 ∈= ⊥
∑∑

M 0
1

(3)
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where |Ξ j 〉 span the orthogonal complement M 0
⊥ of M0 in the N-electron

space HN of the model employed.
Clearly, M is not unique, since we only require that the projections |

~Φi 〉 of
|Ψi〉 onto M0,

|
~Φi 〉 = P|Ψi〉 , P = | |Φ Φi

i

M

i〉 〈
=
∑

1

(4)

span again M0. One then introduces the wave operator U which accom-
plishes the “inverse” mapping (for details, see, e.g., refs10,12)

|Ψi〉 = U|
~Φi 〉 , |

~
|Ψ Φi iU〉 = 〉 , and U = |

~
|Ψ Φi

i

M

i〉 〈
=
∑

1

= U P . (5)

Using the intermediate normalization 〈 〉Φ Ψi j ij|
~

= δ , so that P U = P, we have
that

|
~

| ,
|

Ψ Φ Ξ
Ξ

i i ij j| + b
j

〉 = 〉 〉
〉 ∈ ⊥
∑

M 0

(6)

where

B ≡ ||bij|| = C–1 D , C ≡ ||cij|| , D ≡ ||dij|| . (7)

Finally, projecting Eq. (2) onto M0 we can write

H E i Mi i i
(eff) , ( ,|

~
|
~

, ... , )Φ Φ〉 〉 == 1 (8)

where

H(eff) = P H U = P H U P . (9)

Diagonalizing H(eff) within M0 we thus find the energies Ei (i = 1, ..., M), and
the transformation matrix C since 〈 〉 =Φ Φj i ijc|

~
.

STATE-UNIVERSAL COUPLED-CLUSTER THEORY

Generalizing the SR CC Ansatz to the MR case following Jeziorski and
Monkhorst7, we write
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U T(j)

j
j j= 〉 〈∑e | | ,Φ Φ (10)

so that

|
~

|( )Ψ Φi
T i

i〉 = 〉e and | | ,( )Ψ Φi ij
T j

j
j

M

c〉 = 〉
=
∑ e

1

(11)

where

T i T i T i t i G ik k j
k

j
k

jk

( ) ( ) , ( ) ( ) ( ) .( ) ( )= = ∑∑ (12)

Here G ij
k( ) ( ) designates a k-fold excitation operator (spin-adapted or not)

acting on the reference |Φi 〉. Note that different G ij
k

i i j
k( )
,

( )( )| |Φ Φ〉 ≡ 〉 may rep-
resent the same configuration state, i.e., G i Gj

k
i m

k( ) ( )( )| ( )|Φ Φ〉 〉= l l for some i,
j and l, m.

The cluster amplitudes t ij
k( ) ( ) are then given by the generalized Bloch

equations

Λ Γi ij ji
j i

k k H( ; ) ( ; ) ,
( )

l l=
≠
∑ (eff) (13)

where

Λ Φ Φi
k

i i
T i T ik G i H i H i H( ; ) ( ) | ( )| , ( ) ,( ) – ( ) ( )l l= 〈 〉 = e e (14)

Γ Φ Φij
k

i
T i T j

jk G i( ; ) ( ) | | ,( ) – ( ) ( )l l= 〈 〉e e (15)

and

H Hij i
T j

j
(eff) e= 〈 〉Φ Φ| | .( ) (16)

Note that Λi has the form of the left-hand side of the SR CC equation (right-
hand side being zero) that is associated with the reference |Φi 〉 and Γij’s rep-
resent the coupling coefficients.
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Once the amplitudes t ij
k( ) ( ) are found, we recompute the effective

Hamiltonian matrix H (eff) (eff)≡ || ||H ij and find its eigenvalues and eigen-
vectors (cf. Eq. (8)).

GMS-BASED SU CC METHOD27

In order to preserve as much as possible the connected character of the
theory when using an arbitrary GMS for M0, we distinguish the internal and
external excitation operators G ik

l
( ) ( ). The former ones simply transform the

references among themselves, while the external ones accomplish excita-
tions to M 0

⊥ . Since |
~Ψi 〉 involves only the reference |Φi〉 , Eq. (6), the cluster

amplitudes constituting T(i), Eq. (11), must be such that the coefficients in
|
~Ψi 〉 that are associated with references |Φj〉 , j ≠ i, must vanish. Writing gen-

erally

|
~ ~ |

~
| ,

|

Ψ Φ Ξ
Ξ

i ij j
j=

M

ij j= c b
j

〉 〉 + 〉∑ ∑
〉 ∈ ⊥1 M

(17)

we thus require that

~ ,cij ij= δ (18)

so that Eq. (6) holds. This then implies the constraints that we refer to as
the C-conditions that are imposed on the cluster amplitudes t ij

k( ) ( ) that are
associated with the internal excitations. In fact, the C-conditions can also
be called “connectedness” conditions, since they can be shown to eliminate
the disconnected terms from both the effective Hamiltonian matrix ele-
ments and coupling coefficients27.

Thus, the amplitudes that are associated with one-body internal excita-
tion operators G i , G i il l

( ) ( )( ) ( )|1 1 Φ 〉 ∈ M 0 , must vanish, i.e.

t il
( ) ( ) .1 0= (19)

However, the amplitudes associated with two-body internal excitation op-
erators, say G i G iP P

Q Q
l
( ) ( ) ( )2

1 2

1 2≡ , are given by the C-conditions

t i t i t i t i t iP P
Q Q

P
Q

P
Q

P
Q

P
Q

1 2

1 2

1

1

2

2

1

2

2

1( ) ( ) ( ) ( ) ( ) ,= − + (20)
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and, similarly, for higher-order amplitudes. In general, if G iP P
Q Q

k

k

1

1

...
... ( ) repre-

sents an internal excitation, so that

G i |P P
Q Q

i jk

k

1

1

...
... ( )|Φ Φ〉 〉= , (21)

the corresponding cluster amplitude is given by

t i n T iP P
Q Q

j
n

ik

k

1

1 1
...
... –( ) |( !) [ ( )] | ,= − 〈 〉∏ Φ Φl l

l

l

=1

p

Pk

∑ (22)

where the sum extends over all nontrivial partitions Pk of k, i.e.,
k np= ∑ ⋅=l ll1 , with 0 ≤ nl ≤ k and 1 ≤ p < k. It is then easy to rewrite the
right-hand side of Eq. (22) in terms of the t il ( ) amplitudes defining
T i kl l( ), , , ... , ( )= −1 2 1 .

Thus, in a GMS-based SU CC formalism, the internal amplitudes are
given by the C-conditions, while the external ones are again determined by
the SU CC equations, Eq. (13). The C-conditions must be implemented in
every iteration when solving the SU CC equations. It may be shown that
when the C-conditions hold, the entire formalism remains connected27.
The explicit expressions and the demonstration of the connectivity prop-
erty of both the effective Hamiltonian and of the coupling coefficients will
be presented elsewhere27.

EXTERNALLY CORRECTED SU CCSD METHOD: (N,M)-CCSD

In order to extend the RMR CCSD method to the MR case, we have to de-
termine higher-than-pair cluster amplitudes via the cluster analysis of the
MR CISD wave functions. In view of the fact that the transformed mixed
wave functions |

~Ψi 〉, i = 1, ..., M (be they of the FCI or MR CISD kind) in-
volve only a single reference |Φi 〉, Eq. (6), we can proceed with the cluster
analysis as in the SR case once the transformation defined by C–1 is applied
to the set of chosen states that correspond to the M model-space refer-
ences42. In this way the desired subset of three- and four-body amplitudes
may be easily determined as explained in detail in ref.42

Once the higher-than-pair clusters have been determined, they are used
to evaluate the T3- and T4-dependent terms in all three components of the
SU CC equations, namely in the left-hand sides Λi(k; l), Eq. (14), in the cou-
pling coefficients Γij(k; l), Eq. (15), and in the effective Hamiltonian H ij

(eff) ,
Eq. (16). The role of these terms in the effective Hamiltonian was already
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explored in ref.42 and recently also in the Λi’ and Γij’s by relying on simple
H4 and H8 models27b. We find that individually all three effects are of
roughly the same importance. The simultaneous account of the T3 and T4
terms in Λi’s and in H(eff) gives already very good results. Of course, by far
the superior results are obtained when these clusters are accounted for in all
three components. Needless to say that when we employ the FCI ampli-
tudes for this purpose, we again recover the FCI result, regardless of the
GMS employed. This provides not only a numerical verification of the pro-
posed formalism, but also serves to check the correctness of our codes, simi-
larly to the SR case35,37.

When there is no serious intruder state problem, we can use the same ref-
erence space for both MR CISD and SU CCSD, resulting in the (M,M)-CCSD
method. We also note that (0,M)-CCSD corresponds to the standard SU
CCSD method, while (N,1)-CCSD is equivalent to the SR RMR CCSD ap-
proach.

CONCLUSIONS

The principal effect of the CMS truncation is the appearance of discon-
nected terms that arise from the products of lower-order external excita-
tions. If these terms are simply neglected, the consistency of the SU CC
equations is violated and the theory does not become exact in the limit
when all the relevant clusters are accounted for.

In this paper, we provide a brief outline of a proper GMS-based SU CC
formalism, while preserving the property of the intermediate normaliza-
tion. The key to this formulation is the introduction of the so-called
C-conditions that eliminate the undesirable disconnected terms from the
effective Hamiltonian as well as from the coupling coefficients, and warrant
the exact behavior in the limiting case when all the clusters are accounted
for. Moreover, it can be shown27 that with the exception of coupling coeffi-
cients, all the terms in the resulting formalism can be computed by exploit-
ing the expressions for the standard SR CC theory.

The importance of the CMS truncation was already pointed out in the
General Outline section above. It is instructive to compare our approach to
this problem with the earlier ones. In the first proposal by Meissner et al.25,
the restriction was made to the special incomplete model spaces which,
nonetheless, were general enough to include the quasi-complete model
spaces proposed by Lindgren23 in the context of VU theories. The defining
requirement for such a special IMS is that all excitation operators be
uniquely classified into the internal and external ones not only with re-
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spect to a particular reference function, but with respect to the entire refer-
ence space25. This requirement implies that for all references we have (see
Eq. (1) of ref.26)

PT i i = , Mi( )| , ... , ) .Φ 〉 ≡ 0 1( (23)

In the subsequent paper by Meissner and Bartlett26 this formalism was ex-
tended to a GMS by relaxing the above requirement to (see Eq. (7) of ref.26)

P i T i i Mi( ) ( )| , ( , ... , )Φ 〉 ≡ =0 1 (24)

where

P i Q i Q i Q Pj
j

i

( ) ( ) , ( ) ,
( )

= − = +∑1 (25)

with the sum ∑ j
i( ) extending over those P |j j j≡ 〉 〈Φ Φ | for which there exists

at least one reference |Φl 〉, 1 ≤ l ≤ M, such that G ij ( )|Φl 〉 ∈ ⊥M 0 , where Gj(i)
represents an internal (or “transfer”) operator such that G ij i j( )| |Φ Φ〉 = 〉 .
Thus P(i) can be rewriten as

P i P P Pj j
j

i

j

i

( ) ,
( )( )

= − = ∑∑ (26)

where the sum ∑ j
i( ) extends over those Pj that were excluded above from

the sum ∑ j
i( ) .

In contrast to these formulations, our C-conditions can be stated as fol-
lows

P i MT i
i ie ( ) | | , ( , ... , )Φ Φ〉 ≡ 〉 = 1 (27)

or

P i MT i
i( )| , ( , ... , ) .( )e − 〉 ≡ =1 0 1Φ (28)

In this way, the intermediate normalization is preserved, since Eq. (27) im-
plies that ~cij ij= δ , Eq. (18).
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To illustrate the difference in conditions (23) or (24) and (27), consider,
e.g., the off-diagonal matrix element H ij

(eff) , (i ≠ j), assuming that |Φi 〉 and |Φ j 〉
differ in two molecular spin orbitals, so that | |Φ Φi P P

Q Q
j= G〉 〉

1 2

1 2 , where
G X X X XP P

Q Q
Q P Q P1 2

1 2

1 1 2 2
= ( )( )† † . One then finds

H P P Q Q j

t j P Q

ij

Q Q P P P
Q

(eff) =

+

Λ

Λ
2 1 2 1 2

1 21 2 1 2 1

1

( : ; )

( ) ( :P P 2

1 2

1 2

1 2 1

1

2

2

; )

[ ( ) ( ) ( )] .

j

t j t j t j HP P
Q Q

Q Q P
Q

P
Q

jj+ + P (eff)

(29)

Here PXY = 1 – (XY) is the antisymmetrizer of X and Y, with (XY) designat-
ing the transposition of X and Y. Now, the last term in Eq. (29) vanishes
when the C-conditions, Eq. (20), hold. However, the requirement (23) im-
plies that t P P

Q Q

1 2

1 2 = 0, while at least one of the products, t tP
Q

P
Q

1

1

2

2 or t tP
Q

P
Q

1

2

2

1 , may
be, in general, different from zero. In fact, in a particularly adverse case,
this may dramatically change the correct value of H ij

(eff) , as will be shown
elsewhere27.

The evaluation of the effective Hamiltonian matrix elements and of the
coupling coefficients is further facilitated by the introduction of the con-
cept of local active molecular spin orbitals (MSOs). This concept enables us
to treat any M-dimensional model space as a collection of M(M – 1)/2 two-
dimensional model spaces. Moreover, for all such two-dimensional model
spaces that involve the same number of local active MSOs, we can employ
the same algorithm and codes.

Finally, we have outlined how to extend the amplitude-corrected RMR
CCSD method to the MR case, which in turn is helpful in overcoming the
intruder-state problem. The detailed account of these developments will be
given elsewhere27.
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